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Abstract

We develop a hierarchy of families of stochastic choice rules (SCR’s) based on the concept of a
conditional probability space (CPS) due to Rényi (38, 1955; 39, 1956). The CPS machinery allows
for specializations and generalizations that yield a natural sequence of families of SCR’s. Level 1 of
our hierarchy consists of point CPS’s (PCPS’s), which are CPS’s each of whose component probability
measures concentrate on a point. Level 2 consists of CPS’s. Level 3 is the set of probabilistic mixtures
of PCPS’s and Level 4 is the set of signed mixtures of PCPS’s. This work aims at two unifications of
results in stochastic choice. The first is that we establish our hierarchy at a general measure-theoretic
level, where the underlying set of elementary choice objects is any measurable space and the sub-family
of choice sets is finitary (i.e., the ideal of finite subsets). At this same level of generality, we characterize
Levels 1-3 by the Weak Axiom of Stochastic Revealed Preference, a generalized Independence from
Irrelevant Alternatives (IIA) axiom, and a generalized Block-Marschak condition, respectively. If the
set of elementary choices is finite, Level 4 corresponds to no restriction (the infinite case appears to
be open). The second unification we offer is a treatment of four canonical examples of non-classical
stochastic behavior – specifically, the Similarity, Compromise, Attraction, and Repulsion Effects – in
terms of a single idea, which is mixing over our basic stochastic choice rule of PCPS’s. These examples
also serve to establish that the levels in our hierarchy are strictly nested.

1 Introduction

The field of stochastic choice has deep roots in psychology (Luce, 29, 1959), discrete choice (McFadden, 33,
1974), and behavorial decision theory (Gabaix 20, 2019). The starting point of theoretical development in
this field is the classic Independence from Irrelevant Alternatives Axiom (IIA) due to Luce (29, 1959). But,
very quickly, the empirical validity of this axiom was called into question (Debreu, 14) and a vast and rich
literature has since been built on the basis of alternative axioms and choice rules. (See Strzalecki 46, 2022
for a comprehensive survey.)

In this paper, we go back to the beginning and IIA, and we make this the starting point for a new
architecture of stochastic choice. Our beginning observation is that a stochastic choice rule (SCR) satisfying
IIA is formally equivalent to a concept in probability theory called a conditional probability space (CPS)
due to Rényi (38, 1955; 39, 1956). (This equivalence was briefly noted by Luce 29, 1959, for strictly positive
choice probabilities, and has been generalized by Cerreia-Vioglio et al. 7, 2021.) A CPS is a family of
probability measures indexed by a family of observable events. The key condition on a CPS is a chain rule,
which disciplines the way probabilities are updated on nested sequences of events. Clearly, a CPS can also
carry a choice interpretation. The observable events become choice sets and the associated probabilities
become choice probabilities.

The import of the equivalence between IIA choice rules and CPS’s is that the CPS concept admits
natural specializations and generalizations. Thus, we define the concept of a point CPS (PCPS), where
all probability measures that appear are concentrated (degenerate) on single points. We also consider
probabilistic mixtures of PCPS’s and signed mixtures of PCPS’s. Including the basic CPS concept, these
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four objects establish a well-grounded hierarchy of SCR’s, built in a precise and progressive manner from
the classic starting point of IIA. See Figure 1 for a summary of our CPS hierarchy.

Level 1
Point CPS’s

Level 1
WASRP Point SCR’s

Level 2
CPS’s

Level 2
GIIA SCR’s

Level 3
Probabilistic Mixtures

of PCPS’s

Level 3
BM SCR’s

Level 4
Signed Mixtures

of PCPS’s

Level 4
All SCR’s

Figure 1: A Conditional Probability Hierarchy and Associated SCRs

This paper aims at a unification of results in stochastic choice for a broad setting. To this end, we
establish our choice hierarchy at a general measure-theoretic level, where the underlying set of elementary
choice objects is any measurable space and the sub-family of choice sets is finitary (i.e., the ideal of finite
subsets). This direction appears to have been initiated by Hildebrand (23, 1971), who studied a general-
equilibrium model with random preferences. McFadden and Richter (35, 1971; 36, 1991) and McFadden
(34, 2005, Theorem 5.3) obtain a characterization of random utility in the case where the underlying space
is Polish and the choice sets are compact. Clark (8, 1996) provides a very general characterization result for
random utility based on the de Finetti probability-coherency condition (de Finetti 15, 1937). Closest to our
work is Cohen (9, 1980), who proves an equivalence between finitely additive random choice and random
utility in the finitary case. We will make use of techniques in this last paper. To the best of our knowledge,
our paper is new in offering a unified treatment of a full hierarchy for stochastic choice in a general measure-
theoretic (although finitary) setting. In particular, our focus is not on random-utility representations but
instead on systematically building a full choice hierarchy from PCPS’s, which are a very basic stochastic
choice rule.

Our general hierarchy is characterized at each level by existing or generalized axioms for stochastic choice.
Level 1 is characterized by the Weak Axiom of Stochastic Revealed Preference or WASRP (Bandyopadhyay,
Dasgupta, and Pattanaik, 2, 1999, 3, 2002; Dasgupta and Pattanaik 12, 2007). (Level 1 concerns point
SCR’s, which are degenerate on each choice set.) Level 2 is characterized by a Generalized Independence of
Irrelevant Alternatives (GIIA) axiom we define. Level 3 is characterized by a generalized Block-Marschak
(BM) condition (Block and Marschak 4, 1960; Cohen 9, 1980). If the underlying set of choices is finite, then
Level 4 corresponds to no restriction. This follows from Dogan and Yildiz 16, 2023, Theorem 2). A general
characterization of Level 4 appears to be open.

Each level of our hierarchy is nested within the next one. This is true by definition for Level 1 vs. Level
2 and Level 3 vs. Level 4. We establish that Level 2 is nested within Level 3 by proving that our GIIA
axiom implies a generalized BM condition. This proof involves some new techniques involving dimensionally-
ordered systems of measures (Rényi 39, 1956) which we believe may be of independent interest.

The inclusions in our hierarchy are strict. This is immediate for Level 1 vs. Level 2. Level 3 strictly nests
Level 2 because we can cast the Similarity Effect (Debreu 14, 1960; Tversky 47, 1972, 48, 1972; McFadden
35, 1974) and the Compromise Effect (Simonson 42, 1989; Simonson and Tversky 44, 1992) as probabilistic
mixtures of PCPS’s that violate IIA. In a similar fashion, we place the Attraction Effect (Huber, Payne,
and Puto 24, 1982; Simonson 42, 1989) and the Repulsion Effect (Aaker 1, 1991) in Level 4, by casting
them in terms of signed mixtures of PCPS’s. As is well known, these last two effects violate the Regularity
Axiom, which is implied by BM, so they strictly separate our Level 4 from our Level 3. We use these
behavioral effects – Similarity, Compromise, Attraction, and Repulsion – as a convenient way to establish
strict inclusions. But we hope that our treatment of them is a second way that our paper unifies some
aspects of stochastic choice. These four effects are usually described quite differently in behavioral terms
(as we review later). By viewing all of them as arising from mixtures over our basic PCPS object, we aim
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to bring out their common architecture.
The organization of the rest of the paper is as follows. Section 2 introduces stochastic choice rules and

conditional probability spaces in our general setting. Section 3 defines probabilistic and signed mixtures of
PCPS’s. Section 4 proves the equivalence between CPS’s and SCR’s satisfying GIIA (Level 2) and between
probabilistic mixtures of PCPS’s and BM (Level 3). The main result of this section is the proof that if
an SCR satisfies GIIA, then it satisfies BM. Section 5 completes the axiomatization of levels of our choice
hierarchy by proving the equivalence between PCPS’s and point SCR’s satisfying WASRP. It then shows
that Level 4 corresponds to no restrictions on SCR’s in the finite case. Section 6 covers the four behavioral
effects we mentioned earlier. Section 7 explains why our choice hierarchy differs from one built from total
orders (the short reason is that mixing and the chain rule for CPS’s do not commute) and contains discussion
of some literature that adds finer detail relative to our hierarchy and of an alternative stochastic transitivity
hierarchy. Short proofs of theorems are in the main text, while longer proofs can be found in two appendices.

2 SCR’s and CPS’s

In this section, we define the objects that occupy Levels 1 and 2 of our hierarchy. Given a measurable
space (Ω,F), we write ∆(Ω) for the set of all probability measures on (Ω,F). Let G be a sub-family of F .
Throughout, we will assume that ∅ /∈ G.

Definition 1. A stochastic choice rule (SCR) (relative to G) is a map c : G → ∆(Ω), which we write
as G 7→ cG(·) for G ∈ G, satisfying:

1. cG(G) = 1 for every G ∈ G.

Definition 2. A conditional probability space (CPS) (relative to G) is a map p : G → ∆(Ω), which we
write as G 7→ pG(·) for G ∈ G, satisfying:

1. pG(G) = 1 for every G ∈ G;

2. pG(E) = pG(F )pF (E) for every E ⊆ F ⊆ G with E ∈ F and F,G ∈ G.

Thus, a CPS is an SCR satisfying an extra chain rule requirement, namely, Condition 2 of Definition 2).
(In Rényi 38, 1955, Condition 2 takes the form: If E,F ∈ F , G ∈ G, and F ∩ G ∈ G, then pG(E ∩ F ) =
pG(F )pF∩G(E). This is readily seen to be equivalent to our Condition 2.)

Luce (29, 1959) already noted the equivalence between CPS’s and SCR’s satisfying IIA, for the case of
finite choice sets and strictly positive probabilities. Cerreia-Vioglio et al. (7, 2021) extend this equivalence
to the finitary case and non-negative probabilities.

Next, let s : G → Ω be a selection on G, that is, for each G ∈ G, s(G) ∈ G.

Definition 3. Fix a SCR c : G → ∆(Ω). Suppose there is a selection s such that, for each G ∈ G and
F ∈ F :

cG(F ) = 1F (s(G)). (1)

That is, cG(·) is the Dirac measure concentrated on s(G). We call such an SCR a point SCR (PSCR).

Definition 4. Fix a CPS p : G → ∆(Ω). Suppose there is a selection s such that, for each G ∈ G and
F ∈ F :

pG(F ) = 1F (s(G)). (2)

That is, pG(·) is the Dirac measure concentrated on s(G). We call such a CPS a point CPS (PCPS).

3 Probabilistic and Signed Mixtures of PCPS’s

To define Level 3 of our hierarchy, we need to build a measurable space of PCPS’s. We do so by adapting
methods from Cohen (9, 1980). Fix an arbitrary (infinite) set Ω. Let the family G of choice sets consist of
all finite nonempty subsets of Ω, and let F be the field generated by G. We will call G finitary. Note, in
particular, that F contains all singletons {ω}. Let Π be the set of all PCPS’s (relative to the fixed family
G) on (Ω,F).

Next, define the set:
A = {(α,G) : α ∈ G and G ∈ G}, (3)

and, for each (α,G) ∈ A:
[α,G]Π = {p ∈ Π : pG(α) = 1}. (4)
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Let DΠ be a field on Ω containing the sets [α,G]Π. (We choose a specific such field in the next section.) Fix
a finitely additive probability measure Q on (Π,DΠ). We now have the apparatus needed to define Level
3. Under mixing over PCPS’s, the probability that the choice α is made from the choice set G is exactly
Q([α,G]Π). With this, we can say what it means for an SCR to be realized in this fashion.

Definition 5. An SCR G 7→ cG(·) is realizable as a Π-based probability mixture if there is a finitely
additive probability measure Q on (Π,DΠ) such that for all (α,G) ∈ A:

cG({α}) = Q([α,G]Π). (5)

We restrict the measure theory here to the finitely additive case because later we will make use of a
finitely-additive characterization result in Cohen (9, 1980). The extension of Level 3 – and Level 4 below –
of our choice hierarchy to the countably additive case is, we believe, open.

To define Level 4, we employ the same measurable structure as for probabilistic mixtures, and simply
replace unsigned with signed measures.

Definition 6. An SCR G 7→ cG(·) is realizable as a Π-based signed probability mixture if there a
finitely additive signed probability measure Q on (Π,DΠ) such that for all (α,G) ∈ A:

cG({α}) = Q([α,G]Π). (6)

The introduction of negativity in this definition can be seen as a formal move, or can be given a behavioral
interpretation (Dogan and Yildiz 16, 2023; Brandenburger et al. 5, 2025), as we will see later.

4 Nesting of Levels

Two of the three relationships between levels of our hierarchy in Figure 1 are immediate from the definitions.
Level 2 nests Level 1 by relaxing degeneracy of the component probability measures in a PCPS. Level 4
nests Level 3 by relaxing non-negativity of the mixing probability measure Q. This leaves the relationship
between Levels 2 and 3, which is not immediate. We establish that Level 3 indeed nests Level 2 by making
use of an axiomatic characterization of each level and then relating the axioms. We are not aware of a direct
proof of this nesting, at least in the general setting we consider. That said, our indirect route employs some
techniques – in particular, a theorem on dimensionally ordered systems of measures – that may find other
uses in the field of stochastic choice. We begin with a definition for Level 2.

Definition 7. A stochastic choice rule c : G → ∆(Ω) satisfies Generalized Independence of Irrelevant
Alternatives (GIIA) if for every G,H ∈ G, and every E,F ∈ F with E,F ⊆ G ∩H, we have:

cG(E)× cH(F ) = cH(E)× cG(F ). (7)

It is clear that GIIA implies the usual statement of IIA in terms of probability ratios, in the case that
cH(E)× cH(F ) ̸= 0. The following result is essentially already in Cerreia-Vioglio et al. (7, 2021). We state
it here under the assumption that G is closed under finite intersections.

Theorem 1. Fix a measurable space (Ω,F) and a sub-family G of F which is a π-system. The family of
CPS’s G 7→ pG(·) coincides with the family of SCR’s G 7→ cG(·) satisfying Generalized Independence of
Irrelevant Alternatives (GIIA).

Proof. Fix a CPS G 7→ pG(·). Also fix G,H ∈ G and E,F ∈ F , where E,F ⊆ G ∩H. Using the equivalent
Rényi (38, 1955) form of Condition 2 of a CPS, we can write:

pG(E) = pG(E ∩H) = pG(H)× pG∩H(E), (8)

pG(F ) = pG(F ∩H) = pG(H)× pG∩H(F ), (9)

pH(E) = pH(E ∩G) = pH(G)× pG∩H(E), (10)

pH(F ) = pH(F ∩G) = pH(G)× pG∩H(F ). (11)

Multiplying the left sides of Equations 8 and 11, and the left sides of Equations 9 and 10, we obtain:

pG(E)× pH(F ) = pH(E)× pG(F ), (12)

establishing the forward direction of the proof. (This direction extends the proof of Theorem 6 in Rényi, 38,
1955.) For the reverse direction, suppose that Equation 12 holds and H ⊆ G, and set F = H. We obtain

cG(E)× cH(H) = cH(E)× cG(H), (13)

from which, since cH(H) = 1, our Condition 2 of a CPS is satisfied.
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Turning to Level 3, we obtain an axiomatic characterization in terms of the classic Block and Marschak
(4, 1960) condition, as generalized by Cohen (9, 1980, Definition 2.4).

Definition 8. The Block-Marschak (BM) condition associated with an SCR G 7→ cG(·) is the require-
ment that the function q : Ω× G × G → R defined by:

q(α,G,H) =

|G|∑
j=0

(−1)|G|−j
∑

{E⊆G:|E|=j}

cH\E({α}), (14)

for G ⊊ H and α ∈ H\G, is everywhere non-negative.

Theorem 2. Fix a set Ω and a finitary sub-family G of subsets of Ω. The family of SCR’s G 7→ cG(·)
realizable as Π-based probability mixtures coincides with the family of SCR’s G 7→ cG(·) satisfying the Block-
Marschak (BM) condition.

Our method of proof is to transfer a characterization result in Cohen (9, 1980, Theorem 4.1) on total
(complete, transitive, and antisymmetric) orders to PCPS’s. (The Cohen result extends the classic equiva-
lence result of Falmagne 17, 1978 to the infinite choice context.) Let Λ be the set of all total orders � on
Ω. For (α,G) ∈ A, we mirror Equation 4 and define the sets:

[α,G]Λ = {� ∈ Λ : α�G\{α}}, (15)

where α � G\{α} means α � β for all β ∈ G\{α}. Cohen (9, 1980, Section 4) builds a field BΛ on Λ with
the property that all such sets [α,G]Λ lie in this field. We want to build a field DΠ on Π that contains all
sets [α,G]Π and on which we can define a finitely additive probability measure Q from a finitely additive
probability measure P on (Λ,BΛ). To do so, we make use of the theory of charges (i.e., finitely additive
measures). We begin with a definition (Rao and Rao 37 1983, Definition 3.2.2).

Definition 9. Fix an arbitrary set Ω and let E be a collection of subsets of Ω. A function µ : E → R+ is a
positive real partial charge on (Ω, E) if:

M∑
i=1

1Ci
≤

N∑
j=1

1Dj
(16)

implies:
M∑
i=1

µ(Ci) ≤
N∑
j=1

µ(Dj), (17)

for any C1, . . . , CM , D1, . . . , DN ∈ E.

To use this theory, consider the following collection of subsets of Π:

H = {[α,G]Π : (α,G) ∈ A} ∪ {Π}, (18)

and define a function Q : H → R+ by:

Q([α,G]Π) = P ([α,G]Λ) and Q(Π) = 1. (19)

The next result is key. It is proved in Appendix A.

Theorem 3. The function Q is a positive real partial charge on H.

We now appeal to an extension theorem for charges (Rao and Rao 37, 1983, Theorem 3.2.10).

Theorem 4. Fix an arbitrary set Ω, let E be a collection of subsets of Ω with Ω ∈ E, and suppose µ is
a positive real partial charge on (Ω, E). Then, for any field D containing E, there is a finitely additive
probability measure µ̃ on (Ω,D) that extends µ.

To apply this theorem, let DΠ denote the field generated by the collection of sets H in Equation 18. (In
the statement to follow, we do not distinguish the extension of Q from Q itself. No confusion should result.)

Theorem 5. Fix the finitely additive probability space (Λ,BΛ, P ). There is a finitely additive probability
measure Q on (Π,DΠ) such that:

Q([α,G]Π) = P ([α,G]Λ), (20)

for all (α,G) ∈ A.
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Proof. The proof is immediate from putting together Theorems 3, Theorem 4, and the definition of Q in
Equation 19.

We can now transfer the characterization result from Cohen (9, 1980).

Definition 10. An SCR G 7→ cG(·) is realizable as a Λ-based probability mixture if there a finitely
additive probability measure P on (Λ,BΛ) such that for all (α,G) ∈ A:

cG({α}) = P ([α,G]Λ). (21)

Cohen (9, Theorem 4.1) proves that an SCR is realizable in this way if and only if the generalized BM
condition (our Definition 8) is satisfied. This result together with our Theorem 5 immediately establishes
our Theorem 2.

Now that we have axiomatizations – via GIIA and BM, respectively – of Levels 2 and 3, we can prove
nestedness via the following result.

Theorem 6. Fix a measurable space (Ω,F) and a finitary sub-family G of F . If an SCR G 7→ cG(·) satisfies
GIIA, then it satisfies BM.

The proof of this theorem relies on a representation of CPS’s given by Rényi (39, 1956).

Definition 11. Fix a measurable space (Ω,F), and a sub-family G of F with ∅ /∈ G. Let (Γ,≺) denote an
arbitrary totally ordered index set, and suppose that for every γ ∈ Γ there is an associated measure µγ on
(Ω,F). Call the system of measures dimensionally ordered if:

1. for every G ∈ G, there is a γ ∈ Γ such that 0 < µγ(G) < +∞;

2. if µα(G) < +∞ and α ≺ β, then µβ(G) = 0.

Note that for every G ∈ G, there is a unique γ ∈ Γ such that 0 < µγ(G) < +∞. Also, if β ≺ γ, then
µβ(G) = +∞. Now, for G ∈ G and F ∈ F , we define:

pG(F ) =
µγ(F ∩G)

µγ(G)
, (22)

where γ is this unique index for G. The next result is implied by the proof of Theorem 1 in Rényi (39,
1956). We provide a self-contained proof in Appendix B.

Theorem 7. The family of maps G 7→ pG(·) defined in Equation 22 is a CPS relative to G.

The following representation result is Theorem 1 in Rényi (39, 1956). It gives a sufficient condition for
a CPS to be generated by a dimensionally ordered system of measures. Appendix B gives an outline of the
proof (which is an extended exercise in measure theory).

Theorem 8. Fix a CPS G 7→ pG(·) where G is closed under finite unions. Then there is a dimensionally
ordered system of measures {µγ : γ ∈ Γ} such that each pG(·) is obtained via Equation 22.

The proof of our Theorem 6 first observes that, by our Theorem 1, if an SCR satisfies GIIA, then it is a
CPS. If G is finitary, then it is closed under finite unions. Therefore, by Theorem 8, this CPS is generated
by a dimensionally ordered system of measures. From this, and using Equation 22, we can write, for all
(α,G) ∈ A:

cG({α}) =
µγ(G)({α})
µγ(G)(G)

, (23)

where, for any F ∈ G, γ(F ) is the unique index with 0 < µγ(F ) < +∞. Turning to the BM condition of
Equation 14, we use this formula for the terms on the right-hand side. We are then able to establish that
q(α,G,H) ≥ 0 when G is a singleton, and we go on to treat the general case by successive substitution. The
full proof is in Appendix B.

With this result, all nested relationships indicated in Figure 1 are verified.

5 Axiomatization of Levels Contd.

We have already stated axiomatic characterizations of Levels 2 and 3 of our choice hierarchy, in order to
establish nestedness (Theorem 6). We now go back to Level 1 and axiomatize this level. To do so, we make
use of a stochastic analog to the Weak Axiom of Revealed Preference (WARP) of classic demand theory
introduced by Bandyopadhyay, Dasgupta, and Pattanaik (2, 1999, 3, 2002) and Dasgupta and Pattanaik
(12, 2007).

6



Definition 12. A stochastic choice rule G 7→ cG(·) satisfies the Weak Axiom of Stochastic Revealed
Preference (WASRP) if for every G,H ∈ G and every F ∈ F with F ⊆ G ∩H:

cH(F )− cG(F ) ≤ cG(G\H). (24)

We next establish our characterization of Level 1 and then discuss the meaning of WASRP. Our result
is stated for the assumption (weaker than finitarity) that G is closed under finite intersections and set
differences. Recall the meaning of a point SCR (PSCR) from Definition 3.

Theorem 9. Fix a measurable space (Ω,F) and a sub-family G of F which is a semiring. The set of PCPS’s
G 7→ pG(·) coincides with the set of PSCR’s G 7→ cG(·) satisfying WASRP.

Proof. Fix a PCPS pG(·) relative to G. We need to show that pG(·), viewed as an SCR, is a PSCR and
satisfies WASRP. It is immediate that pG(·) is a PSCR, so we show that WASRP is satisfied. Fix G,H ∈ G
and F ∈ F with F ∈ G ∩ H. Case (i): s(G) ∈ G\H. Then pG(G\H) = 1, from which Inequality 24
is satisfied. Case (ii): s(G) ∈ F . Then pG(F ) = 1, from which Inequality 24 is again satisfied. Case
(iii): s(G) ∈ (G ∩ H)\F . Then pG(F ) = 0 and pG(G\H) = 0, so, in light of Inequality 24, we need to
show that pH(F ) = 0. Suppose not, so that s(H) ∈ F and pH(F ) = 1. Then pH(G ∩ H) = 1. Using
pH(F ) = pH(G ∩H) pG∩H(F ), we find pG∩H(F ) = 1. Using pG(F ) = pG(G ∩H) pG∩H(F ), pG(F ) = 0 (as
already shown), and pG(G ∩ H) = 1 (since s(G) ∈ G ∩ H), we find pG∩H(F ) = 0, a contradiction. This
establishes one direction of the proof.

For the reverse direction, fix an SCR cG(·) relative to G satisfying WASRP. We need to show that the
chain rule holds: cG(E) = cG(F )cF (E) for every E ⊆ F ⊆ G with E ∈ F and F,G ∈ G. Write WASRP in
the form:

cG(E)− cF (E) ≤ cF (F\G). (25)

Case (i): s(G) ∈ E and s(F ) ∈ E. Then cG(E) = 1, and therefore cG(F ) = 1, and also cF (E) = 1, so that
the chain rule is satisfied. Case (ii): s(G) ∈ E and s(F ) /∈ E. Then cG(E) = 1 and cF (E) = 0. But from
Inequality 25, using cF (F\G) = cF (∅) = 0, we then get 1 − 0 ≤ 0, a contradiction. Case (iii): s(G) /∈ F .
Then cG(E) = 0 and cG(F ) = 0, so that the chain rule is again satisfied.

To explain WASRP, observe that the axiom does not require equality of the choice probabilities cH(F )
and cG(F ). This might be the obvious extension of WARP but would be too restrictive. Instead, WASRP
limits how big the difference in probabilities can be, which must lie in the range [−cH(H\G),+cG(G\H)].
Bandyopadhyay, Dasgupta, and Pattanaik (2, 1999) and Dasgupta and Pattanaik (12, 2007) provide the
following argument for the upper bound. When the choice set changes from G to H, this rules out “compet-
ing” choices in G\H to the alternatives in F . This effect may raise the probability cH(F ) that the chosen
alternative lies in F . But this increase, viz. the difference cH(F )− cG(F ), should be bounded above by the
original choice probability for G\H, viz. cG(G\H). The argument for the lower bound is analogous.

It remains to characterize Level 4 of our stochastic choice hierarchy. We proceed by transferring a result
from Dogan and Yildiz (16, 2023). Fix finite Ω and let F = 2Ω and G = 2Ω\{∅}. Theorem 2 in Dogan and
Yildiz (16, 2023) states that every SCR on Ω is realizable as as a Λ-based signed probability mixture. Here,
the definition of realizability is the same as in our Definition 10 except that P is allowed to be signed. This
result can be transferred to our setting in the same way we transferred Cohen (9, 1980, Theorem 4.1) earlier.
Recalling Definition 6, we have a characterization of Level 4 – namely, that all SCR’s are now included.

Theorem 10. Suppose the choice domain Ω is finite, F = 2Ω, and G = 2Ω\∅. Then every SCR G 7→ cG(·)
is realizable as a Π-based signed probability mixture.

Saito (41, 2018) proves a more general result on realization of SCR’s as signed mixtures of orders, where
the family G of choice sets can be an arbitrary (nonempty) subset of 2Ω\{∅}. Saito (41, 2018, Corollary
6(ii) and Footnote 22) demonstrates how Theorem 2 in Dogan and Yildiz (16, 2023) follows.

The proof of the Dogan-Yildiz results works via a (significant) extension of the Ford-Fulkerson Theorem
from combinatorial matrix theory (Ford and Fulkerson 18, 2015) to allow for negative row and column sums.
The generalization of this method to an infinite choice domain Ω is, we believe, open.

6 Strict Nesting

Challenges to the IIA axiom as an accurate description of stochastic behavior go back to Debreu (14, 1960).
Starting then, many behavioral phenomena have been identified that violate this and other choice axioms.
In this section, we cast four classic such phenomena in the language of our framework. (Davis-Stober et
al. (13 2023) is a recent survey of the relevant theoretical and empirical literature.) This is a convenient way
to demonstrate strict nesting of the levels of our hierarchy. We will also make a conceptual observation that
emerge from our treatment. We begin with the separation between Level 2 and Level 3. (The separation
between Level 1 and Level 2 is immediate. It is witnessed by any non-point CPS.)
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6.1 The Similarity Effect

Debreu (14, 1960) introduced the scenario represented by the Similarity Effect, which was named this way
by Tversky (47, 1972, 48, 1972). We review the effect couched in the McFadden (33, 1974) “red bus-blue
bus” language.

The underlying set of choices is Ω = {red bus,blue bus, taxi}. The decision maker (DM) is indifferent
between taking a bus or a taxi and flips a coin to decide between these two modes of travel. Within the
bus category, the DM does not care about the color of the bus and therefore flips a coin to decide on red
vs. blue if both choices are available. Set G = {Ω, {blue bus, taxi}} and consider the following three PCPS’s
pr, pb, pt:

prΩ({red bus}) = 1, pr{blue bus,taxi}({blue bus}) = 1, (26)

pbΩ({blue bus}) = 1, pb{blue bus,taxi}({blue bus}) = 1, (27)

ptΩ({taxi}) = 1, pt{blue bus,taxi}({taxi}) = 1. (28)

The DM puts probability 1
4 on each of the first and second PCPS’s pr and pb, and probability 1

2 on the
third PCPS pt. If the choice set is Ω, then the DM averages over the PCPS’s to arrive at probability 1

2
on choosing a bus and probability 1

2 on choosing a taxi. If the choice set is {blue bus, taxi}, then the DM
averages to get again probability 1

2 on a bus and probability 1
2 on a taxi. This is the intuitive set of choice

probabilities. But, in the first case, the probability ratio of blue bus to taxi is 1 : 2, while in the second case
it is 1 : 1. This violates (G)IIA. By Theorem 1, the SCR just defined is not a CPS. We conclude that Level
3 of our choice hierarchy strictly nests Level 2.

6.2 The Compromise Effect

We next show how to encompass the Compromise Effect (Simonson 42, 1989; Simonson and Tversky 44,
1992) in the same manner. The underlying set of choices is Ω = {l-camera, m-camera, h-camera}, where
l-camera is the low-quality/low-price option, m-camera is the medium-quality/medium-price option, and
h-camera is the high-quality/high-price option. Set G = {{l-camera, m-camera}, Ω}. Faced with the choice
set {l-camera, m-camera}, the DM selects each camera with equal probability. Faced with the choice set Ω,
the DM selects each of the l-camera and the h-camera with probability 1

4 , and selects the m-camera with
probability 1

2 . This again is a violation of (G)IIA. The usual story is that the addition of the h-camera to
the choice set emphasizes the inferiority of the l-camera, which in turn makes the m-camera stand out as a
good compromise between the low quality of the l-camera and the high price of the h-camera.

This scenario can be represented via a probabilistic mixture of PCPS’s:

plΩ({l-camera}) = 1, pl{l-camera, m-camera}({l-camera}) = 1, (29)

phΩ({h-camera}) = 1, ph{l-camera, m-camera}({l-camera}) = 1, (30)

pmΩ ({m-camera}) = 1, pm{l-camera, m-camera}({m-camera}) = 1. (31)

The DM puts probability 1
4 on each of the first and second PCPS’s pl and ph, and probability 1

2 on the third
PCPS pm. The key here is that when the choice set expands to include the h-camera, then, with probability
1
4 , the DM will switch from the l-camera to the h-camera, reflecting the inferiority of the former.

We point out that the Similarity and Compromise Effects are usually described quite differently in
behavioral terms – as the words we chose to describe are meant to reflect. Despite this, the two effects have
the same formal structure within our framework. While, arguably, some descriptive detail is lost under our
approach, we think that this unification is helpful in bringing out the common underlying architecture of
these behaviors.

6.3 The Attraction and Repulsion Effects

We now turn to the treatment of the Attraction Effect (Huber, Payne, and Puto 24, 1982; Simonson 42,
1989) and the Repulsion Effect (Aaker 1) in our framework. To proceed, we review the Regularity axiom of
stochastic choice, which says that the probability of making a choice that lies in a given set is non-increasing
in the size of the overall choice set. We then check in our framework the well-known fact that BM implies
REG, which will set up our treatment of the two behavioral effects.

Definition 13. A stochastic choice rule G 7→ cG(·) satisfies Regularity (REG) if for every G,H ∈ G with
G ⊆ H, and every F ∈ F with F ⊆ G, we have cH(F ) ≤ cG(F ).
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Theorem 11. Fix a measurable space (Ω,F) and a finitary sub-family G of F . If an SCR G 7→ cG(·)
satisfies BM, then it satisfies REG.

Proof. Consider G,H ∈ G with G ⊆ H, and an SCR G 7→ cG(·) satisfying the BM condition. We want
to show that cH({α}) ≤ cH({α}). Fix a PCPS G 7→ pG(·) and some α ∈ G. The chain rule gives
pH({α}) = pH(G) × pG({α}). It follows that if pH({α}) = 1, then both terms on the right side must be 1
In particular, we infer pG({α}) = 1. From this:

[α,H]Π = {p ∈ Π : pH({α}) = 1} ⊆ {p ∈ Π : pG({α}) = 1} = [α,G]Π. (32)

Using Theorem 2, we write cG(α) = Q([α,G]Π) and cH(α) = Q([α,H]Π). Monotonicity of Q yields cH(α) ≤
cG(α), as required.

We now lay out the Attraction and Repulsion Effects in our framework. The underlying set of choices is
Ω = {x, y, z}} and G = {Ω, {x, y}}. We consider an SCR satisfying:

c{x,y}({x}) < cΩ({x}), (33)

which is a violation of Regularity. In one scenario for the Attraction Effect (Simonson and Tversky 44,
1992), item x is a nice pen, item y is a certain sum of money, and item z is a plain pen. The addition of
item z highlights the attractiveness of item x, which is then chosen with higher probability. In a scenario
for the Repulsion Effect (Simonson 43, 2014, Kruis et al. 28, 2020), item x is candy, item y is an orange,
and item z is a spoiled clementine. The addition of item z casts doubt on the freshness of item y, so that,
again, item x is chosen with higher probability.

We now show how to produce the the Attraction and Repulsion Effects via a signed mixture of PCPS’s.
Specifically, consider four PCPS’s relative to G:

p1{x,y}({x}) = 1, p1{x,y,z}({x}) = 1, (34)

p2{x,y}({y}) = 1, p2{x,y,z}({y}) = 1, (35)

p3{x,y}({x}) = 1, p3{x,y,z}({z}) = 1, (36)

p4{x,y}({y}) = 1, p4{x,y,z}({z}) = 1. (37)

We put a signed probability measure (q1, q2, q3, q4), where each qi ∈ R and
∑4

i=1 qi = 1, on these four
PCPS’s and obtain:

c{x,y}({x}) = q1 + q3, (38)

c{x,y,z}({x}) = q1. (39)

In order to create a violation of REG, we must have q3 < 0. This makes intuitive sense. The PCPS p3

selects item x – the nice pen or the candy – from the choice set {x, y}. But it selects item z – the plain pen
or spoiled clementine – from the larger set {x, y, z}. We expect the DM to want to avoid choosing according
to this PCPS. (We do not rule out that q4 < 0 as well.)

Our analysis here is similar to the treatment of the Attraction Effect by Dogan and Yildiz (16, 2023,
Example 2) in terms of orders. A story to go with the example is that the DM is a principal and there are
four agents, each with one of the four PCPS’s above. (This might be a multiple-selves story.) The principal
has preferences over which agent gets to make choices and dislikes the event that agent 3 – with PCPS
p3 – is the one to choose. Formally, the DM has a negative willingness-to-bet on this event, which is an
interpretation of a negative subjective probability from Brandenburger et al. 5, 2025).

At the formal level, this violation of Regularity via signed probability measures, together with Theorem
11, establishes that Level 4 of our choice hierarchy strictly nests Level 3. At the conceptual level, we note
the unified treatment of all four behavioral effects – Similarity, Compromise, Attraction, and Repulsion.
In our framework, these effects are all obtained in the same way, namely, by mixing over our basic PCPS
object. As usual, mixing can, in turn, be understood as reflecting uncertainty over which specific basic
choice rule is at work.

7 Conclusion

In this section, we make a conceptual point, cover some literature that refines our hierarchy, and mention
an alternative hierarchy based on stochastic transitivity.

a. Non-Commutativity It might seem that our choice hierarchy is built entirely from PCPS’s. If this
were so, then it would be possible to use the language of total orders instead of starting from CPS’s, as we
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do. Indeed, we built a map from total orders to PCPS’s for two of our results. (In Section 3, we used Cohen
9, 1980 to define a finitely additive probability measure on a field of PCPS’s on Ω. In Section 5, we likewise
transferred a result on total orders from Dogan and Yildiz 16, 2023.)

But a careful look reveals that our hierarchy has a different fundamental character. The reason in short
is that two operations – probabilistic mixing and imposing the chain rule – do not commute. Start with
a point SCR. If we impose the chain rule, we obtain a PCPS. Mixing then (in general) yields an object in
Level 3. Next, start again with a point SCR. If we mix, we obtain a general SCR. Imposing the chain rule
then yields an object in Level 2, namely, a CPS. We know that Levels 2 and 3 are distinct. The conclusion
is that the two operations are non-commutative and, for exactly this reason, our hierarchy is not made up
only of mixing operations on PCPS’s.

b. Related Literature Our four-level hierarchy for SCR’s arose organically from the starting point of a
CPS. Naturally, there are important finer distinctions between SCR’s that can be made by adding more
structure. Here, we comment on two such refinements.

First, one can distinguish between Level-4 SCR’s that do or do not satisfy REG. A well-known example
of an SCR that lies above BM but below REG is the additive perturbed utility (APU) model due to
Fudenberg, Iijima, and Strzalecki (19, 2015). This model family can enccompass non-expected utility
preferences arising from implementation costs and ambiguity aversion. A theory that is the convex dual to
APU is the variational preference model of Maccheroni, Marinacci, and Rustichini (30, 2006), interpretable
as a game against malevolent nature. Under restrictions on cost functions, these models all satisfy REG.

Lying above REG is the deliberately stochastic choice model of Cerreia-Vioglio et al. (6, 2019), where
convex preferences over outcomes induce REG violations. Information processing architectures can also
lead to departures from REG, as in the leading analysis by Matejka and McKay (32, 2015). The divisive
normalization model of Steverson, Brandenburger, and Glimcher (45, 2019) employs a neuroscience-inspired
information cost that likewise yields REG violations. Finally, two-stage models involving choice of consider-
ation set and then choice of alternative can readily accommodate non-REG behavior (Kashaev and Aguiar
26, 2022).

Next, we locate some models in our Level 3 that carry additional structure. Galichon 21, 2022) shows
how to write a nested logit model as a mixture of Luce models so that it accommodates the Compromise and
Attraction Effects (but not the Attraction Effect in the form that violates REG). Behavioral models such
as the the attribute model (Gul, Natenzon, and Pesendorfer 22, 2014) and the focal Luce model (Kovach
and Tserenjigmid 27, 2022) also sit at this level.

c. Stochastic Transitivity Hierarchy A well-known hierarchy for stochastic choice is based on stochastic
transitivity, which comes in three forms. An SCR G 7→ cG(·) satisfies strong stochastic transitivity (SST),
medium stochastic transitivity (MST), or weak stochastic transitivity (WST), if c{x,y}({x}) ≥ 1/2 and
c{y,z}({y}) ≥ 1/2 imply:

c{z,x}({x}) ≥


max{c{x,y}({x}), c{y,z}({y})},
min{c{x,y}({x}), c{y,z}({y})},
1
2 ,

(40)

respectively. Rieskamp, Busemeyer, and Mellers (40, 2006) propose an increasing “rationality” hierarchy
going from WST through IIA to SST. Junnan and Natenzon (25, 2024) use MST to characterize Fechnerian
utility functions. It can be shown that our GIIA axiom implies SST. But BM does not imply SST (Strzalecki
46, 2022, Example 3.17) and MST does not imply BM (Cohen and Falmagne 10, 1990, Figure 1).

Returning to Level-4 SCR’s, the APU model (Fudenberg, Iijima, and Strzalecki 19, 2015), in its weak
form, satisfies WST. The divisive normalization model (Steverson, Brandenburger, and Glimcher 45, 2019),
even though it lies above APU, satisfies SST. Overall, the stochastic transitivity hierarchy branches off from
our CPS-based hierarchy at Level 2 (GIIA) and appears to be a distinct organization of SCR’s.

Appendix A: Proof of Theorem 3

We begin by building a map f : Λ → Π. To do so, start with a total order � ∈ Λ and define a selection
s : G → Ω by:

s(G) = !α such that α�G\{α}, (A.1)

where α�G\{α} means α� β for all β ∈ G\{α}.

Theorem A.1. The selection s defines a PCPS G 7→ pG(·) on (Ω,F .
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Proof. We need to show that if E ⊆ F ⊆ G with E ∈ F and F,G ∈ G, then pG(E) = pG(F )pF (E). Case
(i): pG(E) = 1, that is, s(G) ∈ E. Then pG(F ) = 1 by monotonicity, and since F ⊆ G, we certainly have:

s(G)� β ∀ β ∈ F\{s(G)}, (A.2)

so that pF (E) = 1. Case (ii): pG(E) = 0, that is, s(G) ∈ F\E or s(G) ∈ G\F . In the first case, we find
pF (E) = 0, and in the second case we find pG(F ) = 0.

Let f : Λ → Π be the map just constructed. Observe that, by construction, if � ∈ [α,G]Λ, then
f(�) ∈ [α,G]Π.

Theorem A.2. Suppose:
M∑
i=1

1[αi,Gi]Π ≤
N∑
j=1

1[αj ,Gj ]Π . (A.3)

for integers M and N . Then:
M∑
i=1

1[αi,Gi]Λ ≤
N∑
j=1

1[αj ,Gj ]Λ . (A.4)

Proof. Fix an order � ∈ Λ such that (the numbering is without loss of generality):

� ∈ [αi, Gi]Λ for i ≤ m, (A.5)

� /∈ [αi, Gi]Λ for i > m, (A.6)

for some m ≤ M . We need to show that there is a subset {j1, j2, . . . , jm} of the index set {1, 2, . . . , N} such
that:

� ∈ [αji , Gji ]Λ for i ≤ m. (A.7)

From Equation A.1 and the definition of f , the PCPS p = f(�) satisfies:

p ∈ [αi, Gi]Π for i ≤ m. (A.8)

By Inequality A.3, there are indices j1, j2, . . . , jm (there is no loss of generality in using the same indices as
above) such that:

p ∈ [αji , Gji ]Π for i ≤ m. (A.9)

By the construction of p from �, the relation A.9 holds if and only if:

αji �Gji\{αji}, (A.10)

for each i ≤ m, from which we have:

� ∈ [αji , Gji ]Π for i ≤ m. (A.11)

We conclude that � lies in at least m sets on the right-hand side of Inequality A.3, which establishes the
theorem.

The next observation is part of Rao and Rao (37, 1983, Theorem 3.1.9).

Theorem A.3. Let E be a field and let µ be a finitely additive probability measure on (Ω, E). Then µ is a
positive real charge on (Ω, E).

Now fix a finitely additive probability measure P on (Λ,BΛ), the collection H of subsets of Π defined by
Equation 18 in the main text, and the function Q : H → R+ defined by Equation 19 in the main text. We
restate Theorem 3 here and provide the proof.

Theorem A.4. The function Q is a positive real partial charge on H.

Proof. Suppose Inequality A.3 holds. Then, by Theorem A.2, Inequality A.4 holds. By Theorem A.3, we
know that P is a positive real partial charge on (Λ,BΛ). Therefore, applying Inequality 17 in the main text:

M∑
i=1

P ([αi, Gi]Λ) ≤
N∑
j=1

P ([αj , Gj ]Λ), (A.12)
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from which
M∑
i=1

Q([αi, Gi]Π) ≤
N∑
j=1

Q([αj , Gj ]Π). (A.13)

This establishes that Q is a positive real partial charge on H, except if, instead of Inequality A.3, we have:

1Π +

M∑
i=1

1[αi,Gi]Π ≤
N∑
j=1

1[αj ,Gj ]Π , (A.14)

or:
M∑
i=1

1[αi,Gi]Π ≤
N∑
j=1

1[αj ,Gj ]Π + 1Π. (A.15)

But then the proof of Theorem A.2 can be re-run to show that:

1Λ +

N∑
j=1

1[αj ,Gj ]Π ≤
N∑
j=1

1[αj ,Gj ]Λ , (A.16)

or:
N∑
j=1

1[αj ,Gj ]Π ≤
N∑
j=1

1[αj ,Gj ]Λ + 1Λ. (A.17)

The rest of the argument proceeds as before, with Inequality A.16 or A.17 replacing Inequality A.4. If 1Π

is added to both sides of Inequality A.3, this term cancels out.

Appendix B: Proof of Theorem 6

We begin by restating Theorem 7 in the main text and providing a proof.

Theorem B.1. The family of maps G 7→ pG(·) defined in Equation 22 is a CPS relative to G.

Proof. The proof of Condition 1 of Definition 2 is immediate. For Condition 2, we need to show:

µγ(E ∩G)

µγ(G)
=

µγ(F ∩G)

µγ(G)
× µδ(E ∩ F )

µδ(F )
, (B.1)

where γ ∈ Γ is the unique index such that 0 < µγ(G) < +∞ and δ ∈ Γ the unique index such that
0 < µδ(F ) < +∞. Rewrite Equation B.1 as:

µγ(E)

µγ(G)
=

µγ(F )

µγ(G)
× µδ(E)

µδ(F )
, (B.2)

or
µγ(E)× µδ(F ) = µγ(F )× µδ(E). (B.3)

Now note that since F ⊆ G, we have µδ(G) > 0 and therefore δ ⪯ γ. Case (i): If δ = γ, then Equation
B.3 is immediately satisfied. Case (ii): If δ ≺ γ, then µγ(F ) = 0. But µγ(E) = 0, since E ⊆ F , and then
both sides of Equation B.3 are equal to 0, completing the proof.

We next outline the proof of Theorem 8 in the main text, which is Theorem 1 in Rényi (39, 1956). Given
two events G,H ∈ G, define the indicator of the two events by:

i(G,H) =
pG∪H(G)

pG∪H(H)
. (B.4)

If pG∪H(H) = 0, set i(G,H) = +∞. Also, note that nominator and denominator cannot both be 0. Define a
relation on events in G by setting G ∼ H if 0 < i(G,H) < +∞, and say G and H are of the same dimension.
Lemma 2 in Rényi (1956 (39)) establishes that ∼ is an equivalence relation, which is used to partition G into
mutually disjoint classes Gγ . For two distinct indices β and γ, write β ≺ γ or γ ≺ β if i(G,H) = 0 or +∞,
respectively, for G ∈ Gβ and H ∈ Gγ . (This definition can be shown to be independent of the representatives
G and H chosen.) The relation ≺ is a total order.

The next step in the proof is to build measures µγ on (Ω,F), one for each equivalence class Gγ , so that,
if G ∈ Gγ , then Equation 22 is satisfied for this µγ . The final step is to show that the system of measures
{µγ} is dimensionally ordered, i.e., satisfies our Definition 11.
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Cśıszár (11, 1955) weakens the closure condition in Theorem 8 to the requirement that if G,H ∈ G, then
there is J ∈ G such that G ∪H ⊆ J and pJ(G) + pJ(H) > 0. We do not make use of this condition in the
current paper.

It is instructive to see how Theorem 8 fails if G is not closed under (finite) unions. Let Ω = {x, y, z},
G = {{x, y}, {y, z}, {z, w}}, and p{x,y}({y}) = p{y,z}({z}) = p{z,x}({x}) = 1. Then:

µα({y})
µα({x, y})

=
µβ({z})
µβ({y, z})

=
µγ({x})
µγ({z, x})

= 1, (B.5)

from which:

µα({y}) > 0, µβ({z}) > 0, µγ({x}) > 0, (B.6)

µα({x}) = 0, µβ({y}) = 0, µγ({z}) = 0. (B.7)

But then, by the definition of dimensional ordering, we have α < β, β < γ, and γ < α, contradicting total
order.

We need one additional preliminary result. Recall the definition of the function q : Ω×G ×G → R from
Definition 8 in the main text. Using finitarity of our set-up, we can directly apply Theorem 3 in Falmagne
(17, 1978) to obtain the following identity.

Theorem B.2. For any H ∈ G and ∅ ≠ G ⊆ H:∑
α∈H\G

q(α,G,H) =
∑
β∈G

q(β,G\{β}, H). (B.8)

We now restate and prove Theorem 6.

Theorem B.3. Fix a measurable space (Ω,F) and a finitary sub-family G of F . If an SCR G 7→ cG(·)
satisfies GIIA, then it satisfies BM.

Proof. We first treat the case that G is a singleton and then treat the general case by successive substitution.
Suppose G = {ω}, so that:

q(α, {ω}, H) = (−1)× cH({α}) + (+1)× cH\{ω}({α}). (B.9)

Since cH(·) satisfies GIIA, the reverse direction of Theorem 1 implies that it is a CPS. Since G is closed
under finite unions, Theorem 8 says that cH(·) is dimensionally ordered. Therefore, form Equation 22:

cH({α}) =
µγ(H)({α})
µγ(H)(H)

, (B.10)

where, for any F ∈ G, γ(F ) is the unique index for which 0 < µγ(F ) < +∞. Similarly:

cH\{ω}({α}) =
µγ(H\{ω})({α})

µγ(H\{ω})(H\{ω})
. (B.11)

Case (i): γ(H) = γ(H\{ω}) = γ. Then:

q(α, {ω}, H) = (−1)× µγ({α})
µγ(H)

+ (+1)× µγ({α})
µγ(H\{ω})

≥ 0, (B.12)

since µγ(H) ≥ µγ(H\{ω}) by monotonicity. Case (ii): γ(H\{ω}) ≺ γ(H). Then:

µγ(H)(H\{ω}) = 0, (B.13)

so that, again using monotonicity, µγ(H)({α}) = 0 and therefore q(α, {ω}, H) ≥ 0, as required.
Now consider a general (finite) G. We write:

q(α,G,H) =

|G|∑
j=0

(−1)|G|−j
∑

{E⊆G:|E|=j}

cH\E({α}) (B.14)

=

|G|∑
j=0

(−1)|G|−j
∑

{E⊆G:|E|=j}

µγ(H\E)({α})
µγ(H\E)(H\E)

. (B.15)
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Observe that since {α} ⊆ H\E, we have γ({α}) ⪯ γ(H\E). If γ({α}) ≺ γ(H\E) for some E, then
µγ(H\E)({α}) = 0. This means we can re-write Equation B.15 as:

q(α,G,H) = µγ({α})({α})×
|G|∑
j=0

(−1)|G|−j
∑

{E⊆G:|E|=j}
{E⊆G:γ(H\E)=γ({α})}

1

µγ(α)(H\E)
. (B.16)

From this, we calculate:

∑
α∈H\G

q(α,G,H) =
∑

α∈H\G

µγ({α})({α})×
|G|∑
j=0

(−1)|G|−j
∑

{E⊆G:|E|=j}
{E⊆G:γ(H\E)=γ({α})}

1

µγ(α)(H\E)
(B.17)

= µγ({α})(H\G)×
|G|∑
j=0

(−1)|G|−j
∑

{E⊆G:|E|=j}
{E⊆G:γ(H\E)=γ({α})}

1

µγ(α)(H\E)
. (B.18)

If q(α,G,H) = 0, there is nothing to prove, so we can assume q(α,G,H) ̸= 0. This tells us that the
double sum on the right side of Equation B.16 is nonzero, so that, using µγ({α})(H\G) > 0 and Equation
B.18, we know that

∑
α∈H\G q(α,G,H) ̸= 0. We can therefore divide Equation B.16 by Equation B.18 to

get:
q(α,G,H)∑

α∈H\G q(α,G,H)
=

µγ({α})({α})
µγ({α})(H\G)

. (B.19)

From this:

q(α,G,H) =
µγ({α})(({α})
µγ({α})(H\G)

×
∑

α∈H\G

q(α,G,H) (B.20)

=
µγ({α})({α})
µγ({α})(H\G)

×
∑
β∈G

q(β,G\{β}, H) (B.21)

=
µγ({α})({α})
µγ({α})(H\G)

×
∑
β∈G

[ µγ({β})({β})
µγ({β})(H\(G\{β}))

×
∑

β∈H\(G\{β})

q(β,G\{β}, H)
]

(B.22)

=
µγ({α})({α})
µγ({α})(H\G)

×
∑
β∈G

[ µγ({β})({β})
µγ({β})(H\(G \{β}))

×
∑

θ∈G\{β}

q(θ,G\{β, θ}, H)
]

(B.23)

= · · · . (B.24)

Here, Equality B.21 uses Theorem B.2. Equality B.22 comes from substituting in the analog, using β and
G\{β} in place of α and G, to Equation B.20. Equality B.23 is another appeal to Theorem B.2. Noting that
G is finite, we repeat this substitution process a finite number of times until the only term involving q(·, ·, ·)
on the right side is of the form q(ξ, {ω}, H) for some singleton {ω} ⊆ G and ξ ∈ H\{ω}. We know from the
first part of the proof that this term is non-negative. The rest of the right side will reduce to nested weights
and sums, where all weights are positive, so we can conclude that q(α,G,H) ≥ 0, as required.
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Poincaré, 7, 1937.

[16] Dogan, S., and K. Yildiz, “Every Choice Function Is Pro-Con Rationalizable,” Operations Research,
71, 2023, 1857-1870.

[17] Falmagne, J., “A Representation Theorem for Finite Random Scale Systems,” Journal of Mathematical
Psychology, 18, 1978, 52-72.

[18] Ford, L., and and D. Fulkerson, Flows in Networks, Princeton Landmarks in Mathematics and Physics,
56, Princeton University Press, 2015.

[19] Fudenberg, D., R. Iijima, and T. Strzalecki, “Stochastic Choice and Revealed Perturbed Utility,” Econo-
metrica, 83, 2015, 2371-2409.

[20] Gabaix, X., “Behavioral Inattention,” in Bernheim, B.D., S. DellaVigna, and D. Laibson (eds.), Hand-
book of Behavioral Economics - Foundations and Applications, Volume 2, Elsevier, 2019, Chapter 4.

[21] Galichon, A., “On the Representation of the Nested Logit Model,” Econometric Theory, 38, 2022,
370-380.

[22] Gul, F., P. Natenzon, and W. Pesendorfer, “Random Choice as Behavioral Optimization,” Economet-
rica, 82, 2014, 1873-1912.

[23] Hildebrand, W., “Random Preferences and Equilibrium Analysis,” Journal of Economic Theory, 3,
1971, 414-429.

[24] Huber, J., J. Payne, and C. Puto, “Adding Asymmetrically Dominated Alternatives: Violations of
Regularity and the Similarity Hypothesis,” Journal of Consumer Research, 9, 1982, 90-98.

[25] Junnan, H., and P. Natenzon, “Moderate Utility,” American Economic Review: Insights, 6, 2024,
176-195.

15



[26] Kashaev, N., and V. Aguiar. “A Random Attention and Utility Model,” Journal of Economic Theory
204, 2022, 105487.

[27] Kovach, M., and G. Tserenjigmid, “The Focal Luce Model,” American Economic Journal: Microeco-
nomics 14, 2022, 378-413.

[28] Kruis, J., G. Maris, M. Marsman, M. Bolsinova, H. van der Maas, “Deviations of Rational Choice: An
Integrative Explanation of the Endowment and Several Context Effects,” Scientific Reports, 10, 2020,
at https://doi.org/10.1038/s41598-020-73181-2.

[29] Luce, R.D., Individual Choice Behavior: A Theoretical Analysis, Wiley, 1959.

[30] Maccheroni, F., M. Marinacci, and A. Rustichini, “Ambiguity Aversion, Robustness, and the Variational
Representation of Preferences,” Econometrica, 74, 2006, 1447-1498.

[31] Marschak, J., “Binary Choice Constraints on Random Utility Indicators, in Arrow (ed.), Stanford
Symposium on Mathematical Methods in the Social Sciences, Stanford University Press, 1960, 312-329.

[32] Matejka, F., and A. McKay, “Rational Inattention to Discrete Choices: A New Foundation for the
Multinomial Logit Model,” American Economic Review, 105.1 (2015): 272-298.

[33] McFadden, D., “Conditional Logit Analysis of Qualitative Choice Behavior,” in Zarembka, P. (ed.),
Frontiers in Econometrics, Academic Press, 1974, 105-142.

[34] McFadden, D., “Revealed Stochastic Preference: A Synthesis,” Economic Theory, 26, 2005, 245-264.

[35] McFadden, D., and M. Richter, “On the Extension of a Set Function to a Probability on the Boolean
Algebra Generated by a Family of Events, with Applications,” working Paper No. 14, Mathematical
Social Science Board Workshop on the Theory of Markets under Uncertainty, 1971, Department of
Economics, UC Berkeley, 1971.

[36] McFadden, D., and K. Richter, “Stochastic Rationality and Revealed Stochastic Preference,” in Chip-
man, J., D. McFadden, and K. Richter (eds.), Preferences, Uncertainty, and Rationality, Westview
Press, 1991, 161-186.

[37] Rao, B., and B. Rao, Theory of Charges: A Study of Finitely Additive Measures, Academic Press, 1983.
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